Abstract
Fuel composition plays an important role both in efficiency and effectiveness of engines. Combined with the engine variables, fuel can span a wide range of composition space, which makes it demanding to find an optimal composition. Artificial intelligence (AI) algorithms are attracting significant interest for predicting complex phenomenon. In this chapter, a discussion is presented on exploiting the advantages presented by machine learning algorithms for fuel formulation. The present fuel modeling scenario and a holistic approach necessary for fuel optimization is first presented. A wealth of AI algorithms are available to make use of in fuel formulation. These algorithms are discussed in line with their application to fuel formulation and the literature of the explored space in this area is presented. Additionally, a discussion is presented on how AI also helps in assisting the traditional computational fluid dynamic and chemical kinetic analysis for an elaborate study of fuels. Fuel development is just a step in the entire engine innovation cycle, and a perspective of how the AI fits in to this scenario is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.