Abstract

Biofilms are microbial communities which survive in the hostile environment and are highly resistant to various antimicrobial agents and so very difficult to control, which leads to severity infections. There is an urgent need to eradicate these biofilm-forming bacteria. Nanomedicine is an emerging trend in the medical field, as nanoparticles have been well documented for their antagonistic activity against bacteria, fungi, and viruses and has given rise to new insights in antibiofilm research. Nanomaterials such as silver, gold, aluminum, titanium, iron, and zinc are known to inhibit microbial biofilm. However, they are toxic to the host cells and also to the ecosystem. Magnetosomes produced by magnetotactic bacteria are the iron crystals covered by a lipid membrane called magnetosome membrane. This makes them highly unique compared to the synthetic magnetic nanoparticles. Magnetosomes have received much attention due to their low toxicity, ecofriendly, and cost-efficient properties. Magnetosomes are capable of penetrating the biofilm matrix. Magnetosomes in combination with antibiotics/essential oils will be highly proficient in enhancing the wound-healing property. The carrier property of magnetosomes and antimicrobial activity of drugs/natural compound combination is a successful approach for the prevention of microbial biofilm formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call