Abstract

This chapter reviews the crystal growth and characterization for this application and the present state of the art in detector fabrication. Germanium used for low energy X-ray detection is also discussed. The use of high-purity germanium for gamma ray and x-ray detection has been examined, starting with a discussion of the crystal growth and characterization techniques. The temperature and electric field dependence of hole trapping by point defects are discussed in terms of “standard levels.” Improved quantification of peak shape degradation due to point defect traps has helped distinguish between the effects of point defect and extended defect trapping. This has been most notable in the case of radiation damaged detectors. Although published reports most frequently link excessive hole trapping to copper-related defects, the most severe hole collection problems have been observed in high-purity germanium (HPGe) with an unusually high density of extended defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.