Abstract

This chapter provides system basics, a history on Embedded Intel® Architecture processors, and highlights key performance enhancing innovations introduced in the successive generations of x86 processors. The Intel® 186 processor was introduced in 1982 with a clock speed of 6 MHz. The processor is similar to an Intel® 8086 processor, which is the processor used in the original IBM PC. The Intel 186 processor integrates a Direct Memory Access controller and interrupt controller. Integration is the addition of functionality onto an embedded processor that was provided in separate integrated circuits in previous processors. The enhanced Intel 186 processor used today in embedded applications runs at 25 MHz and can address up to 1 MB of memory. Another processor, the Intel386™ processor, was introduced in 1985 with a clock speed of 16 MHz and built with 275,000 transistors. This processor introduced a number of capabilities to x86 processors including 32-bit processing, protected memory, and task switching. Embedded versions currently in use range from 16 MHz to 40 MHz in clock speed and are capable of addressing between 16 MB and 4 GB depending on the specific model. The Intel® Core™ 2 Duo processors for Embedded Computing were introduced in 2006 and were a refinement of the previous generation Dual-Core Intel® Xeon® processors LV and ULV. The clock speed of the processor ranges from 1.5 to 2.16 GHz, features 2 or 4 MB of shared cache, and is a dual-core design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.