Abstract

Management of organ failure has improved in recent years in parallel with advancements in interventions, including organ transplant, although the shortage of donor organs remains the rate-limiting step. The advent of mechanical alternatives to biological organs is a burgeoning area available to clinicians in a variety of scenarios, including short-term procedures (e.g., cardiopulmonary bypass), longer and acute management (e.g., extracorporeal membrane oxygenation), and semi-to-permanent therapies (e.g., ventricular assist devices). A paradigm shift has recently effected a transition from “bridge” therapies toward destination therapies, with a resultant increase in clinical utilization. It is clear, however, that while mechanical circulatory and respiratory support devices can sustain life, damage to blood and its constituents, and/or activation of cellular processes, can negatively impact recovery and health. These adverse effects may be broadly related to blood exposure to high shear stress and/or interactions between biological and artificial materials. Only through advances in mechanical circulatory and respiratory support to minimize blood damage will complications be overcome and mechanical devices attain their true potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.