Abstract

The excitability of smooth muscle cells is regulated, in part, by stretch-activated ion channels in the plasma membrane. The response to stretch of a particular muscle or organ is tuned to specific functional needs by the types of ion channels expressed. Mechanosensitive ionic conductances that yield either inward or outward currents have been observed in and characterized in studies of smooth muscles. In vascular muscles, the dominant response to stretch is muscle contraction (the myogenic response). This chapter proposes several mechanisms for the myogenic response; one of these hypotheses involves stretch-dependent activation of nonselective cation channels. The inward current resulting from an activation of these channels causes plasma membrane depolarization, activation of voltage-gated Ca(2+) channels, Ca(2+) entry, and excitation-contraction coupling. Thus, increasing the vascular pressure and distension of blood vessels cause responsive vasoconstriction. Other conductances are also proposed as participants in the myogenic response, and progress characterizing the inward current channels responsive to stretch is summarized. Outward currents responding to muscle stretch are also present in smooth muscles. For example, expression of stretch-sensitive two-pore domain K(+) (K2P) channels has been reported in visceral smooth muscles. These organs resist contraction on filling and provide a reservoir function. Stretch-dependent outward current channels are hypothesized to help stabilize membrane potential until it becomes desirable to empty the stored contents. Mechanosensitive conductances participate in the integrated responses of smooth muscle tissues. The chapter summarizes the class of channels found in smooth muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call