Abstract
This chapter reviews work on epoxidations with aqueous dihydrogen peroxide catalyzed by tungstate and polytungstate catalysts. The activity of the sandwich polyoxometalate (sandwich POM) in cyclooctene epoxidation is compared to other W-based catalyst systems under ceteris paribus conditions. Catalyst systems based on H2WO4 display the highest activity of the 11 W-catalyst systems tested. Replacing H2WO4 with Na2WO4 in these systems results in a strong decrease of catalyst activity, and this points to the importance of catalyst acidity. An experimental screening of various carboxylic acids cocatalysts has generated a novel W-based epoxidation system. The sandwich POM is among the most efficient of the nonacidic W-based catalyst systems. Examples where the pH neutral nature of the sandwich POM is used advantageously in the preparation of acid-sensitive epoxides are given. Allylic alcohols are epoxidized efficiently with very high reactor yields and very low sandwich POM catalyst loadings. Allylic alcohol epoxidation also proceeds very efficiently with the vanadium containing catalyst and an organic hydroperoxide instead of H2O2 as the terminal oxidant. The diastereoselectivity of the epoxidation of chiral allylic alcohols is rationalized via 1,2- and/ or 1,3-allylic strain effects. Fine-tuning of catalyst activity and selectivity is achieved by varying the relative amount and nature of phase-transfer cocatalysts. Attention is paid to practical aspects that are of relevance for large-scale, industrial use of the sandwich POM catalyst, such as catalyst preparation, handling, and recycling. For the latter, an efficient method based on nanofiltration employing an a-alumina-supported g-alumina membrane has been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.