Abstract

The nervous system functions to encode, process, store and transmit information. To perform these tasks, neurons have evolved sophisticated means of generating electrical and chemical signals. The goals of this chapter are to provide a more detailed mathematical description of neuronal excitability and to introduce several mathematical tools based upon the theory of nonlinear dynamical systems that can be used to analyze neuronal excitability. These mathematical tools (e.g., phase plane analysis, bifurcation theory) provide graphical or geometric representations of the system dynamics and can be used to understand, predict and interpret biophysical features such as threshold phenomena and oscillatory and bursting behavior, as well as the mechanisms of bistability and hysteresis. Such analyses can provide novel insights into the capabilities of individual neurons to process and store information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.