Abstract

Reactive oxygen-induced lipid peroxidation (LP) has been documented to play a critical role in pathophysiology, neurodegeneration, and neurological disability that follows acute traumatic brain injury (TBI) and spinal cord injury (SCI). Consistent with that fact, a number of antioxidant compounds that either scavenges reactive oxygen species or directly inhibit LP have been shown to be protective in preclinical models of TBI and SCI. Although LP is able to damage neural cellular and intracellular membranes, much of the damage is caused by the generation of neurotoxic aldehydic end products derived from peroxidized polyunsaturated fatty acids such as arachidonic acid. Most notably, these reactive compounds, 4-hydroxynonenal (4-HNE) and 2-propenal (acrolein), induce further reactive oxygen species formation and LP. This chapter reviews a relatively new antioxidant strategy involving the pharmacological scavenging of 4-HNE and acrolein referred to as “carbonyl scavenging” that is neuroprotective in SCI and TBI animal models. The prototypes of this class are hydralazine and phenelzine (PZ) that contain hydrazine moieties that can covalently react with the carbonyl function groups of 4-HNE or acrolein thus intercepting them and thus preventing their ability of exacerbate posttraumatic oxidative neurodegeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.