Abstract

In this chapter, we introduce optimal control theory for discrete-time systems. We begin with unconstrained optimization of a cost function and then generalize to optimization with equality constraints. We then cover the optimization or optimal control of discrete-time systems. We specialize to the linear quadratic regulator and obtain the optimality conditions for a finite and for an infinite planning horizon. We also address the regulator problem where the system is required to track a nonzero constant signal. We examine the Hamiltonian system, its use in solving the Riccati equation, and its relation to the eigenstructure of the system with optimal control. Finally, we provide a brief introduction to a control design strategy known as model predictive control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.