Abstract

Abstract This paper presents an analysis of the chaotic motion and its control for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. A new method of controlling chaotic motion for the nonlinear nonplanar oscillations of the cantilever beam, refereed as to the force control approach, is proposed for the first time. The governing nonlinear equations of nonplanar motion under combined parametric and external excitations are obtained. The Galerkin procedure is applied to the governing equation to obtain a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations for the in-plane and out-of-plane modes. The work is focused on the case of 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance-primary resonance for the out-of-plane mode. The method of multiple scales is used to transform the parametrically and externally excited system to the averaged equations which have a constant perturbation force. Based on the averaged equations obtained here, numerical simulation is utilized to discover the periodic and chaotic motions for the nonlinear nonplanar oscillations of the cantilever beam. The numerical results indicate that the transverse excitation in the z direction at the free end can control the chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam. The methodology of controlling chaotic motion by using the transverse excitation is proposed. The transverse excitation in the z direction at the free end may be thought about to be an open-loop control. For the problem investigated in this paper, this approach is an effective methodology of controlling chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.