Abstract

Abstract This paper deals with the harmonic oscillations of a periodically excited van der Pol system where hysteresis was simulated via fractional operator representations. The fractionally damped van der Pol equation was transformed into a set of fractional integral equations and solved by a predictor–corrector method. In particular, we focus on the effect of fractional damping on the dynamic behavior. The time evolutions of the nonlinear dynamic system responses are also described using phase portraits and the Poincare map technique. Results showed that the response of the system was very sensitive to changes in the order of fractional damping. Periodic, quasi-periodic, and chaotic motions existed when the order of fractional damping was less than 1. When the order of fractional damping exceeded 1, only chaotic motion was found among all simulations in this study. Moreover, two different strange attractors were also examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.