Abstract

The collision of a fixed point with a switching manifold (or border) in a piecewise-smooth map can create many different types of invariant sets. This paper explores two techniques that, combined, establish a chaotic attractor is created in a border-collision bifurcation in $\mathbb{R}^d$ $(d \ge 1)$. First, asymptotic stability of the fixed point at the bifurcation is characterised and shown to imply a local attractor is created. Second, a lower bound on the maximal Lyapunov exponent is obtained from the determinants of the one-sided Jacobian matrices associated with the fixed point. Special care is taken to accommodate points whose forward orbits intersect the switching manifold as such intersections can have a stabilising effect. The results are applied to the two-dimensional border-collision normal form focusing on parameter values for which the map is piecewise area-expanding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.