Abstract

Depending on temperature, the modified Hodgkin-Huxley (MHH) equations exhibit a variety of dynamical behaviors, including intrinsic chaotic firing. We analyze synchronization in a large ensemble of MHH neurons that are interconnected with gap junctions. By evaluating tangential Lyapunov exponents we clarify whether the synchronous state of neurons is chaotic or periodic. Then, we evaluate transversal Lyapunov exponents to elucidate if this synchronous state is stable against infinitesimal perturbations. Our analysis elucidates that with weak gap junctions, the stability of the synchronization of MHH neurons shows rather complicated changes with temperature. We, however, find that with strong gap junctions, the synchronous state is stable over the wide range of temperature irrespective of whether synchronous state is chaotic or periodic. It turns out that strong gap junctions realize the robust synchronization mechanism, which well explains synchronization in interneurons in the real nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.