Abstract

Chaos control in the Belousov–Zhabotinsky-CSTR system was investigated theoretically and experimentally by reconstructing the phase space of the cerium (IV) ions concentration time series and then optimizing recurrence quantification analysis measures. The devised feedback loop acting on the reactor inlet flow rate was able to experimentally suppress chaos and drive the system to an almost predictable state with approximately 93% determinism. Similar theoretical results have also been demonstrated in numerical simulations using the four-variable Montanator model as solved by the multistage Adomian decomposition method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.