Abstract

Chaos analysis and control of relative rotation nonlinear dynamic system with Mathieu-Duffing oscillator are investigated. By using Lagrange equation, the dynamics equation of relative rotation system has been established. Melnikov’s method is applied to predict the chaotic behavior of this system. Moreover, the chaotic dynamical behavior can be controlled by adding the Gaussian white noise to the proposed system for the sake of changing chaos state into stable state. Through numerical calculation, the Poincaré map analysis and phase portraits are carried out to confirm main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.