Abstract

This paper investigates chaotic behavior and stability of fractional differential equations within a new generalized Caputo derivative. A semi–analytical method is proposed based on Adomian polynomials and a fractional Taylor series. Furthermore, chaotic behavior of a fractional Lorenz equation are numerically discussed. Since the fractional derivative includes two fractional parameters, chaos becomes more complicated than the one in Caputo fractional differential equations. Finally, Lyapunov stability is defined for the generalized fractional system. A sufficient condition of asymptotic stability is given and numerical results support the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.