Abstract

Floating-gate (FG)-type three-dimensional (3D) fin channel flash memories with triangular fin (TF) and rectangular fin (RF) channels and different interpoly dielectric (IPD) materials have been successfully fabricated using (100)- and (110)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. The electrical characteristics of the fabricated FG-type 3D fin channel flash memories including threshold voltage (Vt) variability, program/erase (P/E) speed, memory window, endurance, and data retention at room temperature and 85 °C have been comparatively investigated. A higher P/E speed, a larger memory window, and a lower-voltage operation are experimentally obtained in the TF channel flash memories with an Al2O3–nitride–oxide (ANO) IPD layer (TF-ANO) than in the RF channel ones with the same ANO IPD layer (RF-ANO) and the TF channel ones with an oxide–nitride–oxide (ONO) IPD layer (TF-ONO). The larger memory window and lower-voltage operation of TF-ANO flash memories are due to the high-k effect of the Al2O3 layer and the electric field enhancement at the sharp foot edges of the TF channels. It was also found that data retention for all fabricated FG-type 3D fin channel flash memories shows a weak dependence on temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.