Abstract

Steady-state power excursions arising from channel-addition wavelength-switching events are measured as a function of spectral configuration and amplifier settings in an erbium-doped-fiber-amplifier- (EDFA-) based reconfigurable optical add-drop multiplexer network, and they exhibit a maximum excursion of 4.5 dB after four spans of 40 km standard single-mode fiber and 5 EDFAs. A simple model is introduced to explain the power-coupling phenomena responsible for the power excursions. The results show that the maximum excursion is determined by the maximum mean gain difference between the existing and added channels and does not necessarily correspond to the maximum number of channels or input power change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call