Abstract
AIMS AND OBJECTIVES:The aim and objective of this study was to assess the temporal changes in the microbiological profiles and antimicrobial resistance patterns of uropathogens in pediatric community-acquired UTI.MATERIALS AND METHODS:This is a retrospective analysis of data collected over a Scattered period of 5 years. The baseline data collected were from January to December 2009, and the second period considered for comparison was from January to December 2014. Urine specimens from children (<17 years) suspected of UTI were cultured by a semi-quantitative method on cysteine lactose electrolyte-deficient medium. Antibiotic sensitivity was put up by Kirby–Bauer disc diffusion method as per the Clinical and Laboratory Standard Institute guidelines.RESULTS:In the year 2009, 340 of 2104 (16.15%) urine specimens yielded significant colony count, whereas in 2014, it was 407 of 2212 (18.39%) (P = 0.051). Escherichia coli was the predominant pathogen and was significantly more prevalent in girls than in boys (P < 0.0001) during both periods. There was a significant overall increase in resistance to ampicillin (from 40.29% to 58.72%), amoxyclav (from 26.17% to 40.54%), nitrofurantoin (from 28.82% to 39.06%), and norfloxacin (from 30% to 41.42%). However, the maximum increase in the resistance was noted for co-trimoxazole from 35.58% in 2009 to 63.39% in 2014 (P = 0.0000058). The prevalence of extended-spectrum beta-lactamases (ESBLs) has also significantly increased from 21.7% to 33.16% (P = 0.0045).CONCLUSION:Although E. coli remains the prime pathogen in pediatric UTI, the prevalence of resistance has dramatically increased over the 5-year study period. Our study highlights the emergence of community-acquired ESBL-producing uropathogens in children proclaiming treatment challenges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have