Abstract

Abstract Anthropogenic warming and land‐use change are expected to accelerate global soil organic carbon (SOC) losses and change plant species composition and richness. However, how changes in plant composition and species richness mediate SOC responses to climate warming and land‐use change remains poorly understood. Using data from a 7‐year warming and clipping field experiment in an alpine meadow on the Qinghai–Tibetan Plateau, we examined the direct effects of warming and clipping on SOC storage versus their indirect effects mediated by plant functional type and species richness. We found that warming significantly increased SOC storage by 8.1% and clipping decreased it by 6.4%, which was closely correlated with the corresponding response of below‐ground net primary productivity (BNPP). We also found a negative correlation between SOC storage and species richness, which was ascribed to the increased BNPP via enhancing the dominance of grasses and decreasing species richness under warming. The lower SOC storage under clipping was caused by the clipping‐induced decrease in BNPP via weakening the dominance of grasses and increasing species richness. Our findings highlight that the SOC storage in this alpine meadow under climate warming and clipping was primarily governed by BNPP changes, which was mediated by changes in the dominance of grasses and species richness. Overall, our study demonstrates that shifting to the dominance of grasses and changing species richness would benefit soil C sequestration under climate warming, but this positive effect would be dampened by grazing or hay harvest. Read the free Plain Language Summary for this article on the Journal blog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.