Abstract

AbstractThe Arctic sea-ice cover has undergone a significant decline in recent decades. The melt season is starting earlier, ice is thinner and seasonal ice dominates. Here we examine the effects of these changes on the solar heat input to the upper ocean in ice-covered Arctic waters from 1985 to 2014. Satellite observations of ice concentration, onset dates of melt and freeze-up and ice age, are combined with ice thicknesses from the PIOMAS model and incident solar irradiance from reanalysis products to calculate the contributions of open ocean and ice to the solar heat input in the upper ocean. Of the total, 86% of the area has positive trends for solar heat input to the ocean through leads due to decreases in ice concentration. Only 62% of the area shows positive trends of solar heat input to the ocean explicitly through the ice. Positive trends are due to thinning ice, while negative trends occur in regions where the ice-free season has lengthened. The annual total solar heat input to the ocean exhibits positive trends in 82% of the area. The spatial pattern of the cumulative annual total solar heat input is similar to the pattern of solar heat input directly to leads.

Highlights

  • The decline of the Arctic sea-ice cover over the past few decades is well established (Richter-Menge and others, 2018)

  • We examine the solar heat input to the upper ocean, including heat directly deposited into the open ocean as well as sunlight transmitted through the ice

  • The combined total solar heat input was dominated by the heat input through the open ocean and demonstrates the same spatial pattern, with slightly larger values due to the contribution from light transmission through the ice

Read more

Summary

Introduction

The decline of the Arctic sea-ice cover over the past few decades is well established (Richter-Menge and others, 2018). The solar heat input directly into open ocean (Fig. 1d) shows a similar pattern to 1988 but with values hundreds of MJ m−2 larger in the Central Arctic (see arrow) and a few hundreds of MJ m−2 smaller in the Bering and Labrador Seas.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.