Abstract

Sonication in water reduced the average contour lengths of nanocellulose prepared from wood cellulose fiber and microcrystalline cellulose. Most of the kinks in the wood cellulose nanofibrils were formed during the initial 10 min of sonication. Fragmentation occurred at the kinks and rigid segments associated with depolymerization during subsequent sonication for 10-120 min, resulting in the formation of cellulose nanocrystals with low aspect ratios. Solid-state cross-polarization magic angle sample spinning 13C-nuclear magnetic resonance revealed that the original crystalline regions of the cellulose were partly transformed to fibril surfaces or disordered regions by both pretreatment and the subsequent fragmentation of molecular chains during sonication. The nanocellulose prepared from microcrystalline cellulose had different fragmentation behavior with regard to molecular chain length following sonication. The results indicated that on average the hexagonal 36 cellulose chain structure formed the cross-section of each wood cellulose microfibril.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.