Abstract

To reduce ice adhesion hazards, optimize or develop the anti/de-icing methods, it is necessary to understand the change of freezing parameters during the freezing process, such as thermodynamic, morphological, and mechanical parameters. The present study investigates the freezing characteristics by purpose-built devices to describe the freezing process quantitatively. Morphological parameters were calculated the reverse engineering. The results showed that the inner temperature and morphology of water droplet were obviously changed, and the freezing process could be mainly divided into three stages: initial and spreading, freezing, and steady-state. Moreover, an experimental apparatus that measured the phase swelling force was built on investigating the freezing process of water from the mechanical aspect. It was found that the swelling force generated from the freezing process of 2473 mm3 water could reach 46.38 N. The generation process of swelling force could also be separated into three stages: non-expansive stage, increasing stage, and stable stage. The formation stage of swelling force was similar to that of ice. Combining the measured expansion force with the calculated freezing parameters based on the observed test, the freezing process of water could be better understood. The study would help researchers and engineers understand the freezing process and provide some freezing characteristics parameters for the anti/de-icing research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.