Abstract

The effects of 3MeV proton irradiation for fluences of 3.5×1010cm−2 to 3.1×1012cm−2 on structure and electrical conductivity of multi-walled carbon nanotubes (MWCNTs) film were investigated. The pristine and the irradiated MWCNTs films were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and electron paramagnetic resonance (EPR) spectroscopy in order to investigate the effects of irradiation on their structure. Electrical conductivity of the MWCNTs films was characterized before and after irradiation. SEM analysis reveals that the proton irradiation for the high fluence (more than 3.6×1011cm−2) leads to evident changes in morphology of the MWCNTs film, such as forming uneven film surface, curve, shrinkage and fragmentation of nanotubes. Based on Raman, XPS, FTIR and EA analyses, it is confirmed that the 3MeV protons with high fluence (more than 3.6×1011cm−2) can damage the structure of the MWCNTs, including increase of the disorder and the formation of functional groups. EPR spectroscopy shows that the electrons delocalized over carbon nanotubes increase with increasing irradiation fluence, implying that the MWCNTs film might be sensitive to ionizing radiation to some extent. With increasing the irradiation fluence, the electrical conductivity of the MWCNTs film decreases due to the structural and morphological damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.