Abstract

This study aimed to expound the changes in soil water flow, heat transport, and tomato production under micro-sprinkler irrigation and plastic film (MSPF) conditions. The effects of different irrigation amounts (I1:0.7 Epan; I2:1.0 Epan; and I3:1.2 Epan (Epan is the cumulative evaporation from a 20 cm diameter standard pan, mm)) on soil water, soil temperature, and tomato yield were studied. A completely randomized trial design was used; meanwhile, the drip irrigation under plastic film (CK1) and micro-sprinkler irrigation without mulch film (CK2) were used as controls. The results showed that the shape of soil moisture was banded under MSPF; the soil wetting range was larger than that of CK1 and CK2 in the profile of MSPF. The change range of 5 cm soil temperature of MSPF 1–5 days after irrigation was 4.05 °C. The change range of 5 cm soil temperature of MSPF was lower than that of CK1 from 1 to 5 days after irrigation. During the growth period of spring and autumn tomato, the average soil moisture content of 0–40 cm with CK1 was 1.97% and 3.83% (spring and autumn, respectively) higher than that of MSPF, and the average soil temperature of 5–25 cm was 2.36% and 1.66% (spring and autumn, respectively) lower than that of MSPF. Compared with CK2, the average soil moisture content of 0–40 cm under MSPF increased by 8.30% and 3.83% (spring and autumn, respectively), and the average soil temperature of 5–25 cm under MSPF increased by 5.85% and 1.68% (spring and autumn, respectively). The spring and autumn tomato yield of MSPF was significantly higher than that of CK1 by 19.39% and 4.54%, respectively. The spring and autumn tomato yield of MSPF were higher than that of CK2 by about 20.46% and 49.22%, respectively. With an increase in the irrigation amount of MSPF, the soil moisture and yield of spring and autumn tomato increase; the soil temperature and water use efficiency of spring and autumn tomato decrease. Considered comprehensively, the MSPF can be used as one of the methods of greenhouse tomato micro-irrigation, and 1.0 Epan is recommended for irrigation parameters in northwest China facility agriculture.

Highlights

  • Facility agriculture is the main vegetable production facility in the world, and it brings huge economic benefits to local farmers [1]

  • This paper found that micro-sprinkler irrigation and plastic film (MSPF) is similar to drip irrigation under plastic film (CK1), both of which belong to localized irrigation model

  • This study found that, under the same irrigation amount, the average soil volume water content of 0–40 cm during the growth period of spring and autumn tomato with drip irrigation under plastic film was higher than that of MSPF by about 1.97% and 3.83%, respectively, indicating that MSPF could reduce the risk of hypoxia stress on tomato roots in the soil near the emitter

Read more

Summary

Introduction

Facility agriculture is the main vegetable production facility in the world, and it brings huge economic benefits to local farmers [1]. As one of the vegetables often grown in facility agriculture, the demand of tomato is increasing year by year due to its high economic and nutritional value [2]. Water resource management is an important factor to increase tomato yield, especially in northwest China, where there is a serious shortage of water resources [3,4]. Irrigation is the main source of physiological water demand in greenhouse tomatoes with high water demand. Excessive irrigation will reduce water productivity, and too little irrigation will make it difficult to ensure stable tomato production [5].

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.