Abstract
To investigate the changes of the biochemical composition of American shad (Alosa sapidissima) eggs and larvae at embryonic and early larval stages, samples were collected at different development stages from artificial fertilization to the end of yolk absorption including 2 h, 12 h and 30 h after fertilization and newly hatched larvae including 1 and 3 days after hatching. The composition of lipid, fatty acids, protein and amino acids were analyzed. The content of total protein exhibited a decreasing trend during embryogenesis and larval development, and a significant reduction was detected after hatching (P < 0.05). The total lipid content remained relative stable. A significant reduction was detected in almost all amino acids after hatching except for glycine (P < 0.05), while a significant decrease was found in the content of cysteine, proline, tyrosine, valine, isoleucine, leucine and phenylalanine during the yolk-sac phase (P < 0.05). On the other hand, all the groups of fatty acids remained stable during the period of embryogenesis. But after hatching, a significant decrease was found in the content of C18:2n-6, C18:3n-6, SFA and ratio of EPA/ARA (P < 0.05), while a significant increase was found in the content of C18:3n-3, C20:4n-6, C22:6n-3 and ratio of n-3/n-6 (P < 0.05). In conclusion, the combined data suggested that American shad utilizes the protein content as preferential energy substrates during embryonic and early larval developments with some specificity in the consumption of different amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.