Abstract

Changes in gel microstructure characteristics and in intermolecular interactions of preserved egg whites during pickling were investigated. Spin–spin relaxation times of preserved egg whites significantly decreased in the first 8days and remained unchanged after the 16th day. SEM images revealed a three-dimensional gel network, interwoven with a loose linear fibrous mesh structure. The protein gel mesh structure became more regular, smaller, and compacted with pickling time. Free sulfhydryl contents in the egg whites increased significantly, while total sulfhydryl contents dramatically decreased during pickling. The primary intermolecular forces in the preserved egg white gels were ionic and disulfide bonds. Secondary forces included hydrophobic interaction and relatively few hydrogen bonds. During the first 8days, the proportion of ionic bonds sharply decreased, and that of disulfide bonds increased over the first 24days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.