Abstract
Maize and its derived fermented products, as with other cereals, are fundamental for human nutrition in many countries of the world. Mixed cultures, principally constituted by lactic acid bacteria (LAB) and yeasts, are responsible for maize fermentation, thus increasing its nutritional value and extending the products’ shelf-life. Other microorganisms involved, such as molds, acetic acid bacteria, and Bacillus spp. can contribute to the final product characteristics. This review gives an overview of the impact of the activities of this complex microbiota on maize product development and attributes. In particular, starting from amylolytic activity, which is able to increase sugar availability and influence the microbial succession and production of exopolysaccharides, vitamins, and antimicrobial compounds, which improve the nutritional value. Further activities are also considered with positive effects on the safety profile, such as phytates detoxification and mycotoxins reduction.
Highlights
Maize or corn (Zea mays) is a graminaceous annual plant whose origin is linked to America
CS93 isolated from pozol has been demonstrated [59,126]; this strain produced several antimicrobial substances such as bacilysin, chlorotetaine, and iturin A, whose efficacy was potent against E. coli and S. aureus, explaining the efficacy of the traditional medicinal uses of pozol by the Mayan civilization [59]
The results of these studies indicate that lactic acid bacteria and some yeast species showed a good performance in reducing the mycotoxin content
Summary
Maize or corn (Zea mays) is a graminaceous annual plant whose origin is linked to America It was introduced into Europe in the sixteenth century, spread outside the continent, across Africa and. In artisanal fermented products, biological risks such as pathogenic microorganisms, as well as chemical contaminants and toxic molecules of microbial origin, including mycotoxins, biogenic amines, and cyanogenic glycosides can be found [67]. For this reason, a deep understanding of the role of the different microbial groups developing in spontaneously fermented products is of crucial importance to optimize the final quality and to improve the food safety of these products.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have