Abstract

Photoperiod and temperature are the major proximate factors that activate the brain-pituitary-gonadal-endocrine axis stimulating gonadal recrudescence. Vasotocin (VT), the basic nonapeptide hormone, is secreted by the nucleus preopticus in the hypothalamus and released from the pituitary into circulation as a neurohormone for physiological actions. Additionally, VT is secreted de novo in the ovary of the catfish and has been implicated in ovarian functions. In the present study, we evaluated the changes in VT secretion during altered photoperiod and temperature exposure. The ovarian changes were monitored over gonadosomatic index (GSI) and plasma steroid hormone levels. Exposure of the catfish to long photoperiod (LP, 16L:08D) daily, alone or in combination with high temperature (HT, 28±2°C), for 14 or 28days resulted in a decrease in brain-pituitary VT level with a concomitant increase in plasma and ovarian VT levels. The changes were greater in the LP+HT group on day 28. Concurrently, the treatments stimulated the GSI and plasma estradiol-17β (E2), testosterone (T) and progesterone (P4) levels with higher more responses in the LP+HT group. Exposure of the catfish to short photoperiod (SP, 08L:16D) daily or total darkness (TD, 24L:00D) daily, with or without changing the ambient temperature, for 14 or 28days produced a depressing effect on VT, GSI and steroid hormone levels, the range of the response varied with the temperature. The brain VT level was low except in the TD+NT group. Plasma and ovarian VT levels decreased more in the SP and TD groups under ambient temperature than in the groups at the raised temperature. The GSI and plasma steroid hormones (E2, T and P4) responded in a similar manner. Plasma cortisol level registered a significant increase in all the groups compared to the initial control groups, and the increase was significantly higher on day 28. The simultaneous activation of VT secretion and ovarian recrudescence by photoperiod and temperature suggests the peptide's involvement in the hormonal control of gametogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call