Abstract

BackgroundPrevious studies have reported that fine particle (PM2.5) concentrations triggered ST elevation myocardial infarctions (STEMI). In Rochester, NY, multiple air quality policies and economic changes/influences from 2008 to 2013 led to decreased concentrations of PM2.5 and its major constituents (SO42−, NO3−, elemental and primary organic carbon). This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014–2016), compared to DURING (2008–2013) and BEFORE these polices and changes (2005–2007).MethodsUsing 921 STEMIs treated at the University of Rochester Medical Center (2005–2016) and a case-crossover design, we examined whether the rate of STEMI associated with increased PM2.5, ultrafine particles (UFP, < 100 nm), accumulation mode particles (AMP, 100-500 nm), black carbon, SO2, CO, and O3 concentrations in the previous 1–72 h was modified by the time period related to these pollutant source changes (BEFORE, DURING, AFTER).ResultsEach interquartile range (3702 particles/cm3) increase in UFP concentration in the previous 1 h was associated with a 12% (95% CI = 3%, 22%) increase in the rate of STEMI. The effect size was larger in the AFTER period (26%) than the DURING (5%) or BEFORE periods (9%). There were similar patterns for black carbon and SO2.ConclusionsAn increased rate of STEMI associated with UFP and other pollutant concentrations was higher in the AFTER period compared to the BEFORE and DURING periods. This may be due to changes in PM composition (e.g. higher secondary organic carbon and particle bound reactive oxygen species) following these air quality policies and economic changes.

Highlights

  • Over the past decade, policy initiatives to improve air quality have been implemented nationwide and in New York State [1]

  • The reduction in PM2.5 concentrations was largely attributed to substantial decreases in sulfate and nitrate (− 65% and − 37%, respectively, from 2001 to 2015) [1], which are secondary Particulate matter (PM) species formed from the oxidation of precursor gases Sulfur dioxide (SO2) and nitrogen oxide (NOx)

  • Short-term increases in PM2.5 concentrations in the previous hours and days have been repeatedly associated with the triggering of myocardial infarction [8, 11,12,13,14,15,16,17], including prior Rochester studies reporting triggering of ST segment elevation myocardial infarction (STEMI) by short-term increases in ambient PM2.5 concentrations in the previous hour [11, 12]

Read more

Summary

Introduction

Policy initiatives to improve air quality have been implemented nationwide and in New York State [1]. Rich et al reported a higher rate of MI associated with increased PM2.5 concentrations when the PM2.5 mixtures had high mass fractions of secondary PM species (sulfate, nitrate, and/or organics), compared to when the mixtures had low mass fractions of secondary PM species [18] This result suggests that PM2.5 high in secondary species, formed through active, oxidative atmospheric photochemistry, may be more likely to trigger myocardial infarctions than primary fine particles [18]. Given these findings, reduced concentrations of secondary PM species sulfate and nitrate following the policy initiatives described above may result in a lower rate of STEMI per unit mass of PM, compared to periods when PM contained a higher proportion of secondary PM. This study examined whether the rate of STEMI associated with increased ambient gaseous and PM component concentrations was different AFTER these air quality policies and economic changes (2014–2016), compared to DURING (2008–2013) and BEFORE these polices and changes (2005–2007)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call