Abstract

The effect of external force on the X-ray pattern from frog muscles in rigor was studied by a time-resolved diffraction technique. When sinusoidal length changes (1.5-3% of the muscle length, 5 Hz) were applied to the muscle, the 14.3 nm intensity decreased during the releasing phase and increased during the stretching phase. The intensity ratio of the equatorial 1.0 and 1.1 reflections did not change, nor were there any appreciable intensity changes in the 5.9 nm and 5.1 nm reflections during the length change. Experiments were also done with the relaxed muscles and no change was seen in any reflection, indicating that the rigor linkages are needed to produce the 14.3 nm intensity change. Thus the distinct effect of the length change was detected only on the 14.3 nm reflection. These results suggest no large conformational changes are induced in both the distal part of the myosin head attached to actin and the actin filament during the oscillation. It is therefore most probable that the proximal portion of myosin heads including S-2 contributes to the intensity change in response to the length change (see, also ref. 21). When the muscle was stretched beyond the filament overlap, the 14.3 nm intensity change was suppressed to less than 50% of that of the slack length. It was also found that the tension change delayed the intensity change during the length oscillation. However, this delay of the tension change as observed in the muscle at the slack length was lacking in the overstretched muscle, indicating that the 14.3 nm intensity change may arise partly from a portion other than the crossbridges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.