Abstract

The hydrological exchange process between Poyang Lake (PYL), the largest freshwater lake in China, and the Yangtze River leads to drastic changes in water area (WA) and water level (WL), as well as apparent fluctuations in lake nutrients, algal organisms, and trophic level index. This study investigated the current status of the PYL water environment and the influence of hydrological changes on the nutrient status of the floodplain of the lake. Based on monthly measured data from six hydrological stations from 2016 to 2019, it was hypothesized that WA and WL were the key regulators of the spatial and temporal distribution patterns of lake water quality and algal growth, including water temperature, water clarity (Secchi depth [SD]), and nutrient levels. The results revealed that (1) the spatial and temporal distribution characteristics of major nutrients in PYL were influenced by dynamic changes in hydrological characteristics (SD, total nitrogen [TN], and total phosphorus [TP]); (2) the eutrophication level in PYL has been in a steady state in recent years, while the central area has been more prone to the risk of eutrophication (e.g., the peak eutrophication index during Period 1 [January to April] in the water near the Duchang station reached 70); and (3) there were significant correlations among environmental variables, nutrients, and algal organisms, with different spatial and temporal distribution characteristics (p < 0.05), while the changes in WA and WL considerably influenced the water environment in the PYL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call