Abstract
Effect of paraquat on the fatty acid composition (weight percentage) of rat lung was studied with particular reference to the change of hydroxyproline content in the course of paraquat-induced dysfunction and subsequent repair. Eight-week-old male Wistar rats were administered paraquat at 20 mg/kg body weight subcutaneously, and the wet weight, hydroxyproline content and fatty acid composition of lungs of each group rats were analyzed at 2, 7, 14 or 28 days after treatment, respectively. The percentage of palmitic acid (C16:0), arachidonic acid (C20:4) and docosahexaenoic acid (C22:6) significantly increased, and the percentage of oleic acid (C18:1) and the ratio of monounsaturated fatty acids/saturated fatty acids (M/S) significantly decreased comparing to control on day 28 after paraquat administration. The time-course of each fatty acid was observed for 28 days after paraquat administration. M/S ratio decreased after paraquat administration up to the 28th day, but the polyunsaturated fatty acids/saturated fatty acids (P/S) ratio decreased during the first 7 days, followed by a increase, and then reached higher level than the 0 day control at the 28th day. Hydroxyproline also increased between the 14th and the 28th days. Eicosapentaenoic acid (C20:5) had once increased during the first 2 days and decreased gradually, while C20:4 maintained high level in this period. C22:6 increased after paraquat administration and maintained high level up to the 28th day. This result indicated that desaturation and elongation in n-3 series fatty acids were accelerated after paraquat treatment, and consequently C20:5 was rapidly converted into C22:6 and decreased. Paraquat might cause elevation of unsaturated fatty acids, espe- cially C20:4 but not C20:5 by the stimulation of the fatty acid desaturase system, and could consequently stimulate local collagen synthesis by C20:4 metabolites in the healing stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.