Abstract

Abstract The eastward movement of a convectively active region is a distinguishing characteristic of the Madden–Julian oscillation (MJO). However, knowledge about the mechanisms that determine the eastward movement speed remains limited. This study investigates how the background environment modulates the speed of the boreal winter MJO and describes an intrinsic relationship between the MJO and background atmospheric circulation. We calculated the speed of the MJO events from the daily tracking of the locations of the minimum values of the outgoing longwave radiation anomaly in the time–longitude space. These speeds were then used to analyze systematic differences in the sea surface temperature (SST) distribution associated with the MJO speed. The analysis revealed a deceleration of the MJO under low-frequency (>90 days) SST distributions that increased toward the western Pacific from both the Indian Ocean and the eastern Pacific. In contrast, the dependency on SST variability in intraseasonal frequencies (20–90 days) was small. Subsequently, the relationship between the MJO speed and background circulation, which is largely determined by the lower boundary condition set by the low-frequency SST distribution, was analyzed. The analysis counterintuitively revealed that the MJO tends to decelerate when the large-scale zonal circulation with low-level westerlies and upper-level easterlies from the Indian Ocean to the Maritime Continents is strong. The results suggest a novel view that the MJO is an integral component of the Walker circulation and that its eastward movement is modulated by the state of the large-scale flow of the Walker circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call