Abstract

To determine changes in the spatial and temporal distribution of cell-cell adhesion molecules during transendothelial migration of monocytes, we examined an in vitro model system of diapedesis using high resolution laser scanning confocal microscopy. Human arterial endothelial cells were cultured to confluence on coverslips coated with Matrigel and activated with IL-1beta before the addition of monocytic THP-1 cells. Seventy per cent of monocytes transmigrated through the endothelium within one hour. Diapedesis, but not adhesion and spreading, was inhibited 8-fold in co-cultures that contained endothelial cell conditioned medium, suggesting the release of an endothelial derived inhibitor. Double immunofluorescence labeling with antibodies to LFA-1, alpha- and beta-catenin, VE-cadherin and with Texas Red phalloidin, identified a circular transmigration passage in endothelial cell-cell contact regions. This passage was formed by an LFA-1-containing pseudopodium that penetrated between endothelial cells. Apical to the transmigration passage, monocytes remained round in shape, while underneath the endothelium, they spread along the Matrigel. The margins of the transmigration passage contained high levels of LFA-1 and F-actin, suggesting a major role of these molecules during the transmigration process itself. Endothelial adherens junctions, as judged by the presence of VE-cadherin and alpha-catenin adjacent to the passage, remained intact during diapedesis. The presence of catenins at heterotypic contact regions between monocytes and endothelial cells during diapedesis suggested cadherin-mediated interactions between the two cell types. These results reveal dynamic changes in the distribution of adhesion molecules and the actin cytoskeleton during monocyte transendothelial migration in culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.