Abstract

Binary potassium-silicate glass was irradiated with a defocused electron beam. During the irradiation the alkali ions migrate from the surface into the depth and alkali ions depleted layer is created near the surface. Such changes in the chemical composition are also accompanied with changes of the glass structure and finally result in the volume changes of the irradiated glass. This was directly studied using atomic force microscope (AFM). A series of exposures with energy of electrons of 7–50 keV and with different doses were performed. For low doses the irradiated glass is continuously depressed with the increasing dose, indicating this way the structural changes leading to the volume compaction. It is suggested the compaction is caused by the relaxation processes of the silica subnetwork. A further increase of the electron dose causes a formation of the small bump inside the center of the depression. The bump arises with the dose and finally exceeds the surrounding surface. It is suggested that the expansion is connected with the migration of alkali ions and the formation of Si–O–O–Si bonds which result in the formation of new rings with new space requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call