Abstract

Principal strain orientations (minimum horizontal compression—ex and maximum horizontal compression—ey) were established at three different types of plate tectonic boundary: two transform faults, an oceanic ridge located on the Southeast Indian Ridge and a trench located close to the South Sandwich Archipelago. To establish the strain patterns in each zone, 104 earthquake focal mechanisms (centroid-moment tensor solutions for earthquakes with mb≥4; Harvard seismology data, CMT) were examined by fault population analysis. Despite the existence of only one tectonic process that controlled deformation in these zones (divergence, convergence or passive displacement), and only one main strain tensor, several coeval strain ellipsoids were found. These differed from the main strain tensor in the location of the principal strains. In general, permutations were observed between the principal strains, i.e., interchanges between the location of the principal strain axes maintaining the strain ellipsoids in the same 3D orientation. Only in some cases were changes in the ellipsoid orientation associated with major structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call