Abstract

Nutrient surpluses on the Delmarva Peninsula have led to a continual accumulation of soil test phosphorus (STP), a potential source for transport of phosphorus (P) to surface waters. This article examines the effects of initial soil test P concentrations and broiler litter additions on STP accumulation. Broiler litter (BL) was applied at rates of 0, 2.5, 5, 7.5, and 10 g kg−1 (dry weight) to three soils: an Evesboro sandy loam (Mesic, coated Typic Quartzipsamments), a Pocomoke sandy loam (coarse‐loamy, siliceous, thermic typic Umbraquults), and a Matapeake silt loam (fine‐silty, mixed, semiactive, mesic Typic Hapludults). Soils and BL were incubated for 16 weeks with subsamples analyzed after 4 and 16 weeks. There was a linear increase in STP (Mehlich‐3), water‐soluble P (WS‐P), iron‐oxide strip‐extractable P (FeO‐P), and Mehlich‐3 phosphorus saturation ratio (M3‐PSR) with broiler litter additions. Regression analysis indicated few significant differences in STP response to added BL between soils within the same soil group having different initial STP levels. Correlation analysis and stepwise regression indicated that increases in WS‐P and FeO‐P from added BL were more closely related to the degree of P saturation of the soil rather than traditional STP measurements. Therefore, decisions regarding manure placement within a watershed should be based on the potential P sorption capacity of the soil as well as potential P transport pathways when the goal is the reduction of P transfer to waterbodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call