Abstract

ABSTRACTUnderstanding the regional dynamics of soil phosphorus (P) chemistry is essential for developing the best fertilizer management practices aimed at enhancing P use efficiency in cropping systems. The soil content of apatite, an important P-containing lithogenic mineral, can be influenced by its position in the local relief of a landscape. The objective of this study was to determine quantitative distribution of various P-forms in estuary plains of southern Pakistan in relation to soil genesis. Soils at different positions within the estuary plain were sampled at various genetic horizons. Apatite-P was the most abundant inorganic P constituent (380-590 mg kg−1) in all cases, followed in decreasing abundance by iron oxides surfaces adsorbed phosphorus (Fe-P), octacalcium phosphates (Ca8-P), aluminum oxides with surface bound P (Al-P) and the least abundant was the phosphorus occluded in iron oxides mineral (Occl-P). The abundance of apatite-P and these other forms of secondary phosphate varied for the soils at different relief positions in these estuary plain landscapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call