Abstract

Wetter conditions beginning in 1993 resulted in marked changes in water levels and surface extent of prairie-pothole region wetland ponds, including closed-basin wetlands in the Cottonwood Lake area of North Dakota, U.S.A. Pond water levels after 1993 were consistently 0.5 to 2 m higher than during 1979–1993 (≤ 1 m deep) in wetlands lacking surface or substantial groundwater outlets, and ponds of some wetlands merged. Pond surface areas after 1993 were as much as twice pre-1993 areas. Weathered glacial till in the inundated uplands provided a source of solutes from the subsurface beyond the extent of the weathered wetland periphery and wetland sediments that existed before 1993. Increased pond peripheries also provided for more movement of solutes from shallow groundwater into wetland ponds during the wetter period. Long periods of higher water levels during pronounced wetter conditions can be associated with increased specific conductance for some wetland ponds. In wetlands receiving no groundwater input, specific conductance values of ponded waters were indistinguishable between wetter and preceding conditions. Thus, changes in specific conductance in wetland ponds during wetter climate conditions cannot be assumed to be uniform, a result of changing watershed solute sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.