Abstract

Olive tree leaves are characterized for having not only a potent antioxidant power but also effects on glucose and lipid metabolism. The impact of the individual oleuropein (OLE), vitamin E + Se (VE), or a combined supplementation of oleuropein, vitamin E, and selenium (VEOLE) was evaluated on pig plasma metabolites under fasting prior to slaughter. VEOLE and OLE had lesser n-3 plasma polyunsaturated fatty acids and greater monounsaturated free fatty acids compared to control. The n-3-fatty acid mobilization was directly correlated with greater cystine and inversely with oxidized glutathione/reduced glutathione (GSSH/GSH) levels. This faster use of n-3 fatty acids might act as an indicator of glutathione synthesis mediated by an increase of cystine in plasma. Different correlations and linear adjustments were observed between plasma antioxidant power and free cystine, free glycine, free glutamine, monounsaturated free fatty acids, and total n-3. The best response to stress was found in VEOLE. Cortisol reached the greatest positive correlation with plasma total n-3 fatty acids, which suggests a faster uptake of n-3 for biological functions such as stress control or energy supply in the brain. From a practical point of view, an enhanced oxidative status as well as control of physiological stress prior to slaughter by the combined antioxidants supplementation might have positive effects on pork quality.

Highlights

  • Stressful situations for the animal, such as husbandry practices, environmental changes, transport, lairage, and fasting prior to slaughter, result in an imbalance between antioxidant defense and free radical production in the organism [1]

  • Serum glucose was clearly diminished by dietary oleuropein supplementation (OLE and VEOLE) (Table 1) after fasting prior to slaughter (P = 0.0175)

  • This effect was more marked when oleuropein was administered independently than when it was combined with vitamin E and selenium

Read more

Summary

Introduction

Stressful situations for the animal, such as husbandry practices, environmental changes, transport, lairage, and fasting prior to slaughter, result in an imbalance between antioxidant defense and free radical production in the organism [1]. This oxidative stress can induce loss of health status with fails in the immune system, lower productivity and welfare [2] that results in lower quality of the products. Dietary supplementation with antioxidants has shown to be an effective strategy to control oxidative stress in vitro [3], in vivo, and meat quality post-mortem [4,5,6].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call