Abstract

ObjectiveThe aim of this study was to examine the time scale of plasma fatty acid changes during transition to an exclusively plant- and fish-based diet in healthy individuals and determine whether there are associated alterations in arachidonic acid (ARA)-derived inflammatory mediators, estimated stearoyl coenzyme A desaturase (SCD) activity, and blood pressure. MethodsIn pursuit of a religious fast, 36 adults abstained from eating poultry, meat, dairy products, and eggs, while increasing fish intake for 6 wk. Participants were assessed 1 wk before (W0) and 1 (W1) and 6 (W6) weeks after the diet change. ResultsBy W6, fasting plasma long-chain ω-3 polyunsaturated fatty acids (ω-3 LC-PUFAs); docosahexaenoic (DHA) and eicosapentaenoic (EPA) had increased (+67% and +73%, respectively; P ≤ 0.001), with early rise of DHA (+22%), but not EPA at W1.The ω-3 index (sum of DHA and EPA as a percent of total fatty acids) increased from 2.1% to 3.4%. ARA decreased progressively (W1, –9%; W6, –16%; P < 0.001). ARA precursors γ-linolenic and dihomo-γ-linolenic acids also decreased, without changes in the ARA-derived mediators prostaglandin-E2 and leukotriene-B4. Myristic acid decreased at W1 (–37%) and W6 (–40%). There was no consistent change in SCD indices. At W6, systolic and diastolic blood pressure had declined by 8 and 5 mm Hg, respectively (P ≤ 0.013). ConclusionsShifting to a plant- and fish-based diet produces rapid and sustained increases in ω-3 LC-PUFAs and decreases the ω-6 PUFA ARA and its precursors, consistent with a cardio-protective profile. The rapid response suggests that these biomarkers may be useful for assessment of diet interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.