Abstract

Solar photovoltaic (PV) power plays a crucial role in mitigating climate change. However, climate change may amplify weather variability and extreme conditions. The extreme conditions can increase the very low PV output and thereby increase the need for grid stabilization services. This study examined how weather variability affects PV power output in the near- (2025–2054) and far-future (2071–2100). The ensemble mean calculated using seven global climate models participating in the coupled model intercomparison project phase 6 for three different shared socioeconomic pathways (SSPs) (SSP126, SSP245, SSP585) was used for the assessment. The standard deviation of the monthly PV power output and the share of very low monthly PV power output were used to assess the variability of PV power output. The findings indicate that the summer PV power output was projected to decrease by 6%–8% in central and northern Tibet under a high emissions scenario (SSP585). The summer months with low PV power output were projected to increase in western regions of China, known for its abundant solar resources. The findings of this study provide valuable insight for energy planners to make up for the influence of future weather variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call