Abstract

BackgroundPatellofemoral joint pain is a common knee disorder, but its underlying causes remain unknown. One proposed mechanism is an imbalance in force in the knee extensor muscles. Specifically, the vastus medialis and vastus lateralis are thought to play a crucial role in proper patellar tracking, and weakness in vastus medialis is thought to lead to a lateral shift in the patella causing increased contact pressures and pain. The purpose of this study was to create an animal model of vastus medialis weakness and to test the effect of this weakness on patellofemoral contact pressures. MethodsExperiments were performed using New Zealand white rabbits (mass 4.9–7.7kg, n=12). Loading of the patellofemoral joint was produced by femoral nerve stimulation of the knee extensor muscles. Knee extensor imbalance was produced by vastus medialis ablation. Fuji pressure sensitive film was used to record contact area, shape and pressures for maximal and sub-maximal, matched-force contractions at knee angles of 30°, 60°, and 90°. FindingsPatellofemoral peak pressures, average pressures, contact areas and contact shapes were the same across all loading conditions for matched-force contractions before and after elimination of vastus medialis. InterpretationWe conclude that vastus medialis weakness does not cause changes in patellofemoral contact pressures. Since the muscular and knee joint geometry in rabbits and humans is similar, we question the idea of vastus medialis weakness as a cause of patellar mal-tracking and patellofemoral joint pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call