Abstract

Patellofemoral joint kinematics, contact areas, and contact pressures were measured concomitantly before and after total knee arthroplasty in 10 fresh frozen human cadaver knees using an Instron machine, a custom patellofemoral joint testing jig, axial bone markers, a continuous video digitizing system, and Fuji pressure sensitive film. The implant used in this study was the Kirschner Performance Knee System with an all polyethylene, domed patellar component. For all tests, the patella was aligned in its anatomically neutral position. Patellofemoral joint contact areas decreased as much as 19-fold after total knee arthroplasty. Mean patellofemoral joint contact pressures increased as much as 32-fold, and peak patellofemoral joint contact pressures increased as much as 22-fold after total knee arthroplasty. No statistically significant differences between preoperative and postoperative specimens were observed with respect to the patellofemoral, patellotibial, or patellar tilt angles from 30 degrees to 120 degrees knee flexion. Thus, the elevated patellofemoral joint contact pressures observed after total knee arthroplasty in vitro are not a primary consequence of iatrogenically altered patellofemoral kinematics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call