Abstract

Abstract Biochar is widely used as a soil amendment to improve soil properties and as a tool to absorb net carbon from the atmosphere. In this study we determined the signatures of organic molecular markers in soil following the incorporation of 5 and 10 t/ha biochar in a Fluvisol, cultivated with maize at the experimental field of the ISSAPP “N. Poushkarov” institute in Bulgaria. The n-alkane distribution in the biochar treated soils was uni- or bimodal maximizing at n-C17 alkane, n-C18 or C18 branched alkanes, i.e. there was an imprint of biomass burning, e.g. from the biochar due to predominance of short chain (< C20) homologues and increased microbial activity (presence of branched alkanes). This is also confirmed by the values for the average chain length (ACL) of n-alkanes which indicated prevalence of homologues of shorter chain (20–21 C atoms) in the variants of longer biochar residence time. There was evidence of trans-13-docosenamide, which originated from biochar. Fatty acids and fatty alcohols distributions also implicate microbial contribution to soil organic matter (SOM), supporting the suggestion that biochar addition can improve soil microbiological status.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.