Abstract

BackgroundMorphological diversity among closely related animals can be the result of differing growth patterns. The Australian radiation of agamid lizards (Amphibolurinae) exhibits great ecological and morphological diversity, which they have achieved on a continent-wide scale, in a relatively short period of time (30 million years). Amphibolurines therefore make an ideal study group for examining ontogenetic allometry. We used two-dimensional landmark-based geometric morphometric methods to characterise the postnatal growth patterns in cranial shape of 18 species of amphibolurine lizards and investigate the associations between cranial morphology, and life habit and phylogeny.ResultsFor most amphibolurine species, juveniles share a similar cranial phenotype, but by adulthood crania are more disparate in shape and occupy different sub-spaces of the total shape space. To achieve this disparity, crania do not follow a common post-natal growth pattern; there are differences among species in both the direction and magnitude of change in morphospace. We found that these growth patterns among the amphibolurines are significantly associated with ecological life habits. The clade Ctenophorus includes species that undergo small magnitudes of shape change during growth. They have dorsoventrally deep, blunt-snouted skulls (associated with terrestrial lifestyles), and also dorsoventrally shallow skulls (associated with saxicolous lifestyles). The sister clade to Ctenophorus, which includes the bearded dragon (Pogona), frill-neck lizard (Chlamydosaurus), and long-nosed dragon (Gowidon), exhibit broad and robust post-orbital regions and differing snout lengths (mainly associated with scansorial lifestyles).ConclusionsAustralian agamids show great variability in the timing of development and divergence of growth trajectories which results in a diversity of adult cranial shapes. Phylogenetic signal in cranial morphology appears to be largely overwritten by signals that reflect life habit. This knowledge about growth patterns and skull shape diversity in agamid lizards will be valuable for placing phylogenetic, functional and ecological studies in a morphological context.

Highlights

  • Morphological diversity among closely related animals can be the result of differing growth patterns

  • This study aims to investigate whether the evolution of adult cranial shape diversity among 18 species of the Amphibolurinae is achieved through heterochrony alone, without changes to the ancestral growth pathway, or through heterochrony and modification of these pathways

  • Variation in cranial shape A principal component analysis (PCA) characterising overall cranial shape across the sampled specimens shows that most of the smaller individuals have high PC1 values and low PC2 values (Fig. 1), which characterise skulls with relatively larger orbits and relatively shorter, smaller, and more slender post-orbit elements, and short blunt snouts

Read more

Summary

Introduction

Morphological diversity among closely related animals can be the result of differing growth patterns. The range of possible forms that natural selection can act upon is limited by the changes that can be generated by growth and development [3, 4] Throughout their development, organisms can undergo changes in shape, due to. Changes in adult shape can occur due to departure from the ancestral growth pathway: changes to the relationship between size and shape (on a bivariate plot of size and shape, changes in slope, intercept, or a combination of both). This instance may be inferred when ontogenetic variation among members of a group does not map onto a common ontogenetic trajectory. Variation in growth patterns among related taxa show that selection can rapidly modify postnatal developmental pathways under some circumstances (e.g. [12,13,14, 24])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call