Abstract

The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear structure changes from $N=25$ across $N=28$ up to $N=39$. A clear development of deformation is observed towards $N=40$, confirming the conclusions of the nuclear moments studies. From a Monte Carlo Shell Model study of the shape in the Mn isotopic chain, it is suggested that the observed development of deformation is not only due to an increase in static prolate deformation but also due to shape fluctuations and triaxiality. The changes in mean-square charge radii are well reproduced using the Duflo-Zuker formula except in the case of large deformation.

Highlights

  • The structure of exotic nuclei exhibits many peculiarities such as halo nuclei, islands of inversion, and shape coexistence

  • The hyperfine spectra of 51,53−64Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN

  • The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear structure changes from N = 25 across N = 28 up to N = 39

Read more

Summary

Introduction

The structure of exotic nuclei exhibits many peculiarities such as halo nuclei, islands of inversion, and shape coexistence. Laser spectroscopy has played a decisive role in studying these phenomena as it enables measurements of spins, nuclear. Due to the complementarity of the measured ground-state properties, a comprehensive description of nuclear structure can be established, for example, the evolution of both singleparticle and collective aspects as a function of nucleon number [2,3]. Mean-square charge radii in particular have been systematically measured across the nuclear chart. They are sensitive to the shape and size of the nucleus and can be extracted for even-even nuclei with I = 0, for which the magnetic moments and spectroscopic quadrupole moments are zero

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.