Abstract
Elevation of left atrial pressure to 25-40 mmHg causes continuous pulmonary edema formation in dog lungs. However, after 5-120 min, the rate of edema formation often increases (acceleration of edema). Acceleration of edema could be associated with an increase in microvascular membrane permeability because an increase in permeability would cause fluid to filter through the microvascular membrane more rapidly. To test the hypothesis that acceleration is associated with increased permeability, we used the continuous weight-gain technique to estimate the pulmonary microvascular membrane filtration coefficient (Kf) before and after acceleration of edema in 10 dogs. Acceleration occurred 36 +/- 38 (SD) min after elevation of left atrial pressure to 35.2 +/- 5.4 mmHg. Rate of weight gain increased from 0.47 +/- 0.17 g/min before acceleration to 0.88 +/- 0.26 g/min (P less than 0.05) after acceleration of pulmonary edema. Kf was increased from initial values of 0.058 +/- 0.027 to 0.075 +/- 0.029 ml.min-1.mmHg-1 (P less than 0.05) after acceleration. In five additional dogs we cannulated lung lymphatics and determined the lymph to plasma protein concentration ratio (CL/CP) before and after acceleration. CL/CP increased from base-line values of 0.37 +/- 0.07 to 0.44 +/- 0.06 (P less than 0.05) after acceleration. Both the increase in Kf and CL/CP data support the hypothesis that acceleration of edema is due, in part, to a slight increase in microvascular membrane permeability. However, the findings could also have been caused by an increase in interstitial conductance, washout of interstitial proteins, or alveolar flooding.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have